550 research outputs found

    Grain processes in massive star formation

    Get PDF
    Observational evidence suggests that stars greater than 100 M(solar) exist in the Galaxy and Large Magellanic Cloud (LMC), however classical star formation theory predicts stellar mass limits of only approx. 60 M(solar). A protostellar accretion flow consists of inflowing gas and dust. Grains are destroyed as they are near the central protostar creating a dust shell or cocoon. Radiation pressure acting on the grain can halt the inflow of material thereby limiting the amount of mass accumulated by the protostar. We first consider rather general constraints on the initial grain to gas ratio and mass accretion rates that permit inflow. We further constrain these results by constructing a numerical model. Radiative deceleration of grains and grain destruction processes are explicitly accounted for in an iterative solution of the radiation-hydrodynamic equations. Findings seem to suggest that star formation by spherical accretion requires rather extreme preconditioning of the grain and gas environment

    Physical conditions in photodissociation regions: Application to galactic nuclei

    Get PDF
    Infrared and sub-millimeter observations are used in a simple procedure to determine average physical properties of the neutral interstellar medium in Galactic photodissociation regions as well as in ensembles of clouds which exist in the nuclei of luminous infrared galaxies. The relevant observations include the Infrared Astronomy Satellite (IRAS) infrared continuum measurements, infrared spectroscopy of the fine-structure lines of SiII 35 microns, OI 63 microns, and CII 158 microns, and the 2.6 mm CO (J=1-0) rotational transition. The diagnostic capabilities of the OI 145 microns line is also addressed. Researchers attribute these emission lines as well as the continuum to the atomic/molecular photodissociation region on the surfaces of molecular clouds which are illuminated by strong ultraviolet fields. They use the theoretical photodissociation region models of Tielens and Hollenbach (1985, Ap. J., 291, 722) to construct simple diagrams which utilize line ratios and line to continuum ratios to determine the average gas density n, the average incident far-ultraviolet flux G sub o, and the temperature of the atomic gas T

    The Chemistry of Interstellar OH+, H2O+, and H3O+: Inferring the Cosmic Ray Ionization Rates from Observations of Molecular Ions

    Full text link
    We model the production of OH+, H2O+, and H3O+ in interstellar clouds, using a steady state photodissociation region code that treats the freeze-out of gas species, grain surface chemistry, and desorption of ices from grains. The code includes PAHs, which have important effects on the chemistry. All three ions generally have two peaks in abundance as a function of depth into the cloud, one at A_V<~1 and one at A_V~3-8, the exact values depending on the ratio of incident ultraviolet flux to gas density. For relatively low values of the incident far ultraviolet flux on the cloud ({\chi}<~ 1000; {\chi}= 1= local interstellar value), the columns of OH+ and H2O+ scale roughly as the cosmic ray primary ionization rate {\zeta}(crp) divided by the hydrogen nucleus density n. The H3O+ column is dominated by the second peak, and we show that if PAHs are present, N(H3O+) ~ 4x10^{13} cm^{-2} independent of {\zeta}(crp) or n. If there are no PAHs or very small grains at the second peak, N(H3O+) can attain such columns only if low ionization potential metals are heavily depleted. We also model diffuse and translucent clouds in the interstellar medium, and show how observations of N(OH+)/N(H) and N(OH+)/N(H2O+) can be used to estimate {\zeta}(crp)/n, {\chi}/n and A_V in them. We compare our models to Herschel observations of these two ions, and estimate {\zeta}(crp) ~ 4-6 x 10^-16 (n/100 cm^-3) s^-1 and \chi/n = 0.03 cm^3 for diffuse foreground clouds towards W49N

    Physical properties of a very diffuse HI structure at high Galactic latitude

    Get PDF
    The main goal of this analysis is to present a new method to estimate the physical properties of diffuse cloud of atomic hydrogen observed at high Galactic latitude. This method, based on a comparison of the observations with fractional Brownian motion simulations, uses the statistical properties of the integrated emission, centroid velocity and line width to constrain the physical properties of the 3D density and velocity fields, as well as the average temperature of HI. We applied this method to interpret 21 cm observations obtained with the Green Bank Telescope of a very diffuse HI cloud at high Galactic latitude located in Firback North 1. We first show that the observations cannot be reproduced solely by highly-turbulent CNM type gas and that there is a significant contribution of thermal broadening to the line width observed. To reproduce the profiles one needs to invoke two components with different average temperature and filling factor. We established that, in this very diffuse part of the ISM, 2/3 of the column density is made of WNM and 1/3 of thermally unstable gas (T ~2600 K). The WNM gas is mildly supersonic (~1) and the unstable phase is definitely sub-sonic (~0.3). The density contrast (i.e., the standard deviation relative to the mean of density distribution) of both components is close to 0.8. The filling factor of the WNM is 10 times higher that of the unstable gas, which has a density structure closer to what would be expected for CNM gas. This field contains a signature of CNM type gas at a very low level (N_H ~ 3 x 10^19) which could have been formed by a convergent flow of WNM gas.Comment: 13 pages, 12 figures, accepted for publication in A&

    A Herschel/HIFI Legacy Survey of HF and H2O in the Galaxy: Probing Diffuse Molecular Cloud Chemistry

    Full text link
    We combine Herschel observations of a total of 12 sources to construct the most uniform survey of HF and H2O in our Galactic disk. Both molecules are detected in absorption along all sight lines. The high spectral resolution of the Heterodyne Instrument for the Far-Infrared (HIFI) allows us to compare the HF and H2O distributions in 47 diffuse cloud components sampling the disk. We find that the HF and H2O velocity distributions follow each other almost perfectly and establish that HF and H2O probe the same gas-phase volume. Our observations corroborate theoretical predictions that HF is a sensitive tracer of H2 in diffuse clouds, down to molecular fractions of only a few percent. Using HF to trace H2 in our sample, we find that the N(H2O)-to-N(HF) ratio shows a narrow distribution with a median value of 1.51. Our results further suggest that H2O might be used as a tracer of H2 -within a factor 2.5- in the diffuse interstellar medium. We show that the measured factor of ~2.5 variation around the median is driven by true local variations in the H2O abundance relative to H2 throughout the disk. The latter variability allows us to test our theoretical understanding of the chemistry of oxygen-bearing molecules in the diffuse gas. We show that both gas-phase and grain-surface chemistry are required to reproduce our H2O observations. This survey thus confirms that grain surface reactions can play a significant role in the chemistry occurring in the diffuse interstellar medium n_H < 1000 cm^-3.Comment: 53 pages; 12 figures, accepted for publication in ApJ main journa

    Herschel PACS and SPIRE spectroscopy of the Photodissociation Regions associated with S 106 and IRAS 23133+6050

    Get PDF
    Photodissociation regions (PDRs) contain a large fraction of all of the interstellar matter in galaxies. Classical examples include the boundaries between ionized regions and molecular clouds in regions of massive star formation, marking the point where all of the photons energetic enough to ionize hydrogen have been absorbed. In this paper we determine the physical properties of the PDRs associated with the star forming regions IRAS 23133+6050 and S 106 and present them in the context of other Galactic PDRs associated with massive star forming regions. We employ Herschel PACS and SPIRE spectroscopic observations to construct a full 55-650 {\mu}m spectrum of each object from which we measure the PDR cooling lines, other fine- structure lines, CO lines and the total far-infrared flux. These measurements are then compared to standard PDR models. Subsequently detailed numerical PDR models are compared to these predictions, yielding additional insights into the dominant thermal processes in the PDRs and their structures. We find that the PDRs of each object are very similar, and can be characterized by a two-phase PDR model with a very dense, highly UV irradiated phase (n \sim 10^6 cm^(-3), G0_0 \sim 10^5) interspersed within a lower density, weaker radiation field phase (n \sim 10^4 cm^(-3), G0_0 \sim 10^4). We employed two different numerical models to investigate the data, firstly we used RADEX models to fit the peak of the 12^{12}CO ladder, which in conjunction with the properties derived yielded a temperature of around 300 K. Subsequent numerical modeling with a full PDR model revealed that the dense phase has a filling factor of around 0.6 in both objects. The shape of the 12^{12}CO ladder was consistent with these components with heating dominated by grain photoelectric heating. An extra excitation component for the highest J lines (J > 20) is required for S 106.Comment: 20 pages, 10 figures, A&A Accepte

    Two-dimensional AMR simulations of colliding flows

    Full text link
    Colliding flows are a commonly used scenario for the formation of molecular clouds in numerical simulations. Due to the thermal instability of the warm neutral medium, turbulence is produced by cooling. We carry out a two-dimensional numerical study of such colliding flows in order to test whether statistical properties inferred from adaptive mesh refinement (AMR) simulations are robust with respect to the applied refinement criteria. We compare probability density functions of various quantities as well as the clump statistics and fractal dimension of the density fields in AMR simulations to a static-grid simulation. The static grid with 2048^2 cells matches the resolution of the most refined subgrids in the AMR simulations. The density statistics is reproduced fairly well by AMR. Refinement criteria based on the cooling time or the turbulence intensity appear to be superior to the standard technique of refinement by overdensity. Nevertheless, substantial differences in the flow structure become apparent. In general, it is difficult to separate numerical effects from genuine physical processes in AMR simulations.Comment: 6 pages, 6 figures, submitted to A&
    corecore